Mechanism design Recitation IX

Agenda

- Basic idea behind mechanism design
 - Permits vs. taxes
 - Price floors and safety valves (price ceilings)

Be sure to take good notes & ask questions!

Recap: Uncertainty

- Two or more outcomes: e.g. ε, payoffs, MAC
- Known probabilities
- Expected values (aka weighted average)

 =Prob(Outcome1)*Value(Outcome1)
 + Prob(Outcome 2)*Value (Outcome 2)
 + etc

Basics: Forecasting behaviors with taxes

Regulator ask firms to report MAC and sets tax s.t. MAC_{reported} =MD

Will the firm report its MAC truthfully?

Basics: Forecasting behaviors with permits

Regulator ask firms to report MAC and sets permits supply s.t. MAC_{reported} =MD

Will the firm report its MAC truthfully?

Problem 1

• Uncertain abatement costs. Two equally likely outcomes: $1 = \frac{1}{2}$

$$C_h(e) = \frac{1}{2}(6-e)^2$$

$$C_l(e) = \frac{1}{2}(4-e)^2$$

Damages function:

$$d(e) = \frac{1}{2}e^2$$

Solutions: Problem 1 a & b

$$\min_{e} E(TC) = E(AC) + D = \frac{1}{2} \left(\frac{1}{2} (6-e)^2 \right) + \frac{1}{2} \left(\frac{1}{2} (4-e)^2 \right) + \frac{1}{2} e^2$$

$$\frac{dE(TC)}{de} = -\frac{1}{2}(6-e) - \frac{1}{2}(4-e) + e = 0$$

$$= -3 + \frac{e}{2} - 2 + \frac{e}{2} + e = 0$$
$$= -5 + 2e = 0$$

 $e^* = 5/2$

Solutions: Problem 1 a & b (Cont'd)

Expected total costs
 E(TC) = E(TAC) + TD

$$E(TC) = \frac{1}{2} \frac{1}{2} (6 - e^*)^2 + \frac{1}{2} \frac{1}{2} (4 - e^*)^2 + \frac{1}{2} (e^*)^2$$
$$E(TC) = \frac{1}{2} \frac{1}{2} \left(6 - \frac{5}{2}\right)^2 + \frac{1}{2} \frac{1}{2} \left(4 - \frac{5}{2}\right)^2 + \frac{1}{2} \left(\frac{5}{2}\right)^2$$

E(TC) = 6.75

Detour: Definitions for efficiency

- The sum of pollution costs is minimized Min (TC of abatement + Damages)
- MAC=MD
- No DWL

Q: Are we likely to get an efficient outcome when the MAC are uncertain?

Price floors & Safety valves

- Minimum price comes into play when costs are low
- Maximum price when the costs are high
- Efficiency rules:
 - Optimal price floor : point at which true MAC_{low} = MD
 - Optimal safety valve: point at which true MAC_{high} = MD
- Outcomes: truthful reporting

Intuition behind the mechanism

Solutions: Problem 1c (safety valves)

$$MD = MAC_{h}$$

$$e = 6 - e$$

$$e = 3$$

$$p = 3$$

$$MAC_{h} = 6 - e$$

Solutions: Problem 1c (price floors)

Take home message

- Asymmetric information results in DWL
- Mechanisms exist for truthful reporting
- Cost-effectiveness & efficiency